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A B S T R A C T

Soil properties are thought to affect annual plant productivity in rangelands, and thus soil variables that are
consistently correlated with plant biomass may be general indicators of rangeland health. Here we measured
several soil properties (e.g. aggregate stability, organic carbon, total nitrogen) and tested each as a would-be
predictor of local variation in peak aboveground grassland biomass. Individual properties explained a slight
(≤10%) amount of variation in plant biomass. Plant biomass was mainly (negatively) associated with two soil
properties, subsurface soil carbonate concentration and the stability of soil macroaggregates near the soil
surface. Less important predictive variables included: elevation, plant community composition, surface soil
organic carbon, and soil carbon:nitrogen. Plot-to-plot variation in plant biomass is seemingly difficult to predict
based on soil properties, including popular indicators of soil and rangeland health and even root biomass. While
protection of soil is critical to overall rangeland ecosystem function, our findings suggest that the relationship
between soil properties and plant biomass in natural grasslands is complex. Thus, there may not be one or even
several soil properties that consistently predict appreciable variation in peak grassland biomass, especially
variation within an ecosystem independent of precipitation.

1. Introduction

Rangelands are the most common biome type in the world,
occurring in vast regions (Ellis and Ramankutty, 2008). Many have
relatively low productivity, yet the capacity of rangelands to annually
produce plant biomass (and animal biomass) is a fundamental ecosys-
tem function and measure of their sustainability (De Groot et al., 2002;
Havstad et al., 2007). The accurate assessment of whether rangeland
function is improving, stable, or degrading is of local to global
importance (e.g. Baveye et al., 2016; Eldridge et al., 2016), especially
since these regions are understudied relative to their geographic area
(Martin et al., 2012). One approach is to indirectly monitor ecosystem
function/health (e.g. Reeves and Baggett, 2014; Stephens et al., 2015)
with, for example, ground-based data of various indicators of ecosystem
function (Pellant et al., 2005; Tongway and Hindley, 2004). There are,
however, innumerable putative indicators (e.g. animal, insect, plant,
soil, spectral) of ecosystem function and health which ideally require
objective (i.e. evidence-based) selection criteria (Andrews and Carroll,
2001; Ludwig et al., 2004; Rezaei et al., 2006). Robust indicators
seemingly should be well-documented, highly correlated with ecosys-
tem functions, and have minimal collinearity with other indicator

variables (Andrews and Carroll, 2001). Unfortunately, it may be slow,
logistically and analytically difficult, and expensive to discern optimal
indicators from a large pool of would-be indicators (Andrews and
Carroll, 2001; Rezaei et al., 2006; Toledo et al., 2014) and to then
determine the importance of each in separate rangeland types. To our
knowledge, relatively few studies have attempted to determine the best
minimum set of soil properties to predict local variation in plant
biomass in natural grasslands (Reinhart et al., 2016; Rezaei et al.,
2006).

Despite the popularity of measuring many putative indicators of
ecosystem function by land managers and scientists (e.g. Herrick et al.,
2010; https://vimeo.com/channels/raythesoilguy), few studies have
actually quantified the predictive accuracy of an indicator or deter-
mined the best (and worst) predictors (Rezaei et al., 2006; Wang,
2010). One of the most relevant studies tested the importance of many
biological, chemical, and physical soil properties on productivity of
Iranian rangelands (i.e. total yield, herbaceous plant production, and
utilizable forage) (Rezaei et al., 2006). Two of the most important
predictor variables were a nutrient cycling index (sensu stricto
Tongway and Hindley, 2004) and soil profile effective thickness. Some
scientists are starting to acknowledge 1) that many putative soil (health
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or quality) indicators may not explain appreciable amounts of actual
variation in ecosystem function (Baveye et al., 2016; Bennett et al.,
2010; Letey, 1991; Oldfield et al., 2015; Reinhart et al., 2015) and 2)
the importance of quantifying the predictive uncertainty of such
indicators.

Here we tested (i.e. mensurative experiment) whether local varia-
tion in grassland peak (aboveground) biomass could be predicted by
other plant, soil, and/or site properties. While moderately large
amounts of year-to-year variation in plant biomass (r2 ≥ 0.74) was
explained by annual variation in precipitation (Wiles et al., 2011), the
best predictive soil properties (i.e. soil physical, microbial, and
chemical properties) have explained only slight amounts
(0.15 ≤ r2 ≤ 0.19) of local (plot-to-plot) variation in plant biomass in
the Northern Great Plains (Reinhart et al., 2016; Reinhart et al., 2015).
In previous work, we were able to explain slight amounts of plot-to-plot
variation in plant biomass by subsurface (5–15 cm) microbial biomass
(r2 = 0.18), plant available nutrients (boron [r2 = 0.19], manganese
[r2 = 0.17], and phosphorus [r2 = 0.18]; Reinhart et al., 2016), and
soil water infiltration data (r2 = 0.15, Reinhart and Vermeire, 2016).
Additional research in northern mixed-grass prairie in North Dakota
indicated that comparable amounts of variation in annual net primary
productivity were explained by plant (i.e. plant community composi-
tion) and soil properties (i.e. bulk density, infiltration, mollic horizon
depth, silt, and soil organic matter) (Wang, 2010). We tested whether
putative predictors explained appreciable (local) variation in peak plant
biomass. Based on prior studies (e.g. Pellant et al., 2005; Rezaei et al.,
2006; Wang, 2010), we predicted peak aboveground plant biomass
would be positively associated with soil organic carbon concentration,
soil organic matter, total nitrogen concentration, and water-stable
aggregates.

2. Methods

2.1. Study site and system

Research was conducted at the USDA-Agricultural Research
Service’s Fort Keogh Livestock and Range Research Laboratory (Fort
Keogh, 21,214 ha) near Miles City, Montana, USA. Mean annual
precipitation was 34 cm (1937–2011). Peak above-ground annual
productivity for this system occurs in July and is dominated by
perennial C3 graminoids (Vermeire et al., 2009). Fort Keogh is centrally
located in the Northern Great Plains Steppe ecoregion where grasslands
cover more than 22 million ha in five states in the USA and two
Canadian provinces and are dominated by temperate and semiarid
mixed-grass prairie (Martin et al., 1998). Average annual precipitation
for this region ranges from less than 25–50 cm with most occurring
during the growing season (May and June). The grasslands support an
estimated 11 million animal unit months of livestock grazing.

The study site (46°18′20.8″N, 105°58′42.8″W) is a silty range site on
an upland plain with a gentle slope (1.05° slope) and fine loamy soil
(Eapa loam, frigid Aridic Argiustolls). Carbonates in the B horizon
indicate the site is a calcareous grassland. The study site (0.3 ha) was
selected because it matched one of the most common grassland types
(Hesperostipa comata, Bouteloua gracilis, and Carex filifolia) in the
Northern Great Plains (e.g. Coupland, 1961; Martin et al., 1998) and
allowed us to sample across local gradients (plot-to-plot) in peak plant
productivity while controlling many abiotic factors.

2.2. Sampling design

Nearly one third (0.1 ha) of the sampled area was within a livestock
exclosure established in 1999 (Fig. 1). The other two thirds were
equally divided among two pastures that on average were grazed at
light to moderate levels (based on USDA-NRCS recommendations)
primarily from May through October. In terms of pasture area per
cow, pasture “A” averaged 16 ha per cow (522 kg = 1150 lbs) during

May and October while pasture “B” averaged 14 ha per cow [between
1991 and 2011 the lowest unit area per cow per month was 2.2 and
2.8 ha per cow, respectively]. We fenced off the remaining sampling
area (i.e. portions of pastures “A” and “B” shown in Fig. 1) from
livestock in 2011 to prevent removal of pin flags and confounding of
plant biomass measures.

2.3. Plant aboveground biomass and composition

We sampled annual aboveground biomass and community composi-
tion at peak production for 81 quadrats (0.25-m2). Quadrats were
placed 0.5 m to the east of each systematically placed point (Fig. 1) and
clipped from July 5–12, 2011. The vegetation in the quadrat was
clipped and separated by dominant species and functional groups.
Dominant species included four graminoids (Carex filifolia, Koeleria
macrantha, Hesperostipa comata, and Pascopyrum smithii) and one cactus
(Opuntia polyacantha). Additional species were grouped as forbs, other
grasses, or shrubs. Our intent was to measure variation in dominant
plant species which are believed to be the main drivers of ecosystem
function (Grime, 1998) and may affect soil properties (Derner et al.,
2006; Gould et al., 2016; Schuman et al., 2009). Plant material was
dried to constant weight, separated into current-year and older
material, and weighed. Because Opuntia is difficult to dry, we used a
correction calculation (0.2 × fresh weight), derived by researchers at
Fort Keogh, to estimate the dry weight of Opuntia.

2.4. Soil core analysis

We measured several soil properties including: root biomass, soil

Fig. 1. Map of the sampling grid. Sampling was divided equally among three adjacent
areas: a livestock exclosure and two adjacent pastures (A, B) grazed annually by cows.
Systematic sampling points (n = 81) are shown (●), axes’ units are meters, and contour
lines represent elevation gain (m) relative to the lowest point in the sampled area. Map
redrawn from Reinhart and Vermeire (2016).
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organic carbon (SOC), soil organic matter (SOM), total nitrogen (N),
and % water-stable aggregates. Soil cores were used to measure most
soil properties, except water-stable aggregates. Soil was cored with an
87 mm diameter soil column cylinder auger, which was hammered to
65 cm deep into the soil (Sunvalley Solutions Inc./Eijkelkamp, FL, USA)
by a hand-held jackhammer powered with compressed air June 12–17,
2012. Surface vegetation was clipped prior to coring. Compaction of the
soil column during the sampling procedure was corrected based on the
measured length of the soil core and the hole depth (Don et al., 2007).
Compaction was on average 1.5% ± 2.1 standard deviation. The soil
cores were segregated into 0–10, 10–30, and 30–60 cm increments and
placed in sealed plastic bags. We sampled 81 points 0.2 m to the west of
fixed points (Fig. 1). The 81 cores resulted in a total of 243 samples that
were brought back to the lab. In the lab, samples were broken up and
weighed. A 5 g subsample was used to determine % water content of the
entire sample. The sample was sealed in a plastic bag and frozen
(−20° C) until processed further.

Because gathering fine root fragments is tedious, we used a
subsampling routine and available sieving equipment to expedite
quantification of root biomass. Samples were thawed and roots were
extracted by hand from fresh samples as described by Reinhart and
Vermeire (2016). The samples were sieved (2 mm) for 1 min on a
mechanical sieve shaker (RO-TAP, RX-29, W.S. Tyler, Mentor, Ohio).
Rocks (> 2 mm) were collected by hand and weighed. A 10 g sub-
sample of soil (< 2 mm) was extracted and roots were removed by
hand. From this, a 2 g soil sample was dried at 50 °C and used to
determine SOM with the loss on ignition test (550 °C, 16 h). A portion
of the root biomass data (77 cores and only 0–30 cm depth increment)
were previously published (Reinhart and Vermeire, 2016).

With the remaining fine soil subsamples (< 2 mm root free soil),
SOC concentration was determined after grinding 1.5 g of soil. SOC
concentration of ground samples was determined by measuring total
carbon concentration (measured with Flash 2000 Series Nitrogen and
Carbon Analyzer, Thermo Scientific, MA, USA) subtracting the soil
inorganic carbon (SIC) which represents the carbonate-C. SIC was
determined by the modified pressure-calcimeter method (Sherrod
et al., 2002). N concentration was measured simultaneously with total
carbon. Because of our soil coring method and dry soil conditions, we
observed that many soil cores had soil particles migrate from the top of
the core to the bottom. So reliable bulk density values could be
estimated for only a small subset of cores (n = 26), and bulk density
(and soil carbon stocks) is not included in analyses. Both % SOC and %
N were corrected for free water in the dried sample.

Soil aggregate stability data were collected 0.5 m to the south of all
81 points. We measured % water-stable (soil) aggregates following
standard methods (Kemper and Rosenau, 1986) described in detail by
Reinhart et al. (2015). In brief, the samples were first dry-sieved, and
the percentage of water-stable aggregates was determined for three
macroaggregate size classes (0.25–1, 1–2, and 2–4 mm) by wet-sieving.
Data were previously published (Reinhart and Vermeire, 2016) and
used to explain variation in biomass of three dominant graminoids and
root biomass.

2.5. Analysis

Outliers (average = 0.8 per variable) were identified and removed
based on the maximum normal residual method (Snedecor and
Cochran, 1989) and P< 0.05. Subsequently, plots with missing data
were omitted from analyses (n = 58). Data summaries are provided
(Table 1). Correlation coefficients among all plant and soil properties
are also provided (Table 2).

Our aim was to identify appreciable associations between plant and
soil properties. The data, however, were potentially spatially corre-
lated, which would violate the assumption of sample independence for
analyses (Legendre, 1993). Variables with spatial autocorrelation were
subjected to additional tests to control for spatial autocorrelation. First,

we tested for the presence of spatial autocorrelations with Moran’s I
tests using the “ape” package (Paradis et al., 2004). We measured
spatial autocorrelation using an inverse distance weighted residual
error matrix. We also visually assessed spatial autocorrelation with
spatial variograms. If spatial autocorrelation was present then we
conducted regression analyses using generalized least squares (GLS)
which can account for spatial autocorrelation in model residuals (Beale
et al., 2010; Dormann et al., 2007). This was done for best multiple
regression models (see next paragraph). For the GLS models, we tested
six ways of fitting a parametric correlation function (uncorrelated
errors, exponential, Gaussian, linear, rational quadratic, spherical) to
the residual co-variance matrix, which were fit by maximizing the
restricted log-likelihood. We selected the model (i.e. uncorrelated
errors) with the lowest Akaike information criterion (AIC) score for
each predictor variable. All tests were performed in R (R Development
Core Team, 2011), and GLS was conducted with the “nlme” package.
Only ordinary least squares regression results are presented because
AIC scores for the GLS models with uncorrelated errors were consis-

Table 1
Study site properties [mean±normal-based 95% CI (minimum, maximum)] for three
adjacent subsections (a grazing exclosure and two adjacent pastures [Fig. 1]) of a
northern mixed-grass prairie site. Variation among the three areas can be interpreted by
whether 95% CI overlap.

depth (cm) Area 1 (grazing
exclosure,
n = 21)

Area 2
(pasture A,
n = 15)

Area 3 (pasture
B, n = 22)

shoot biomass – 2082 ± 185
(1460, 3092)

1784 ± 184
(1158, 2226)

1730 ± 194
(944, 2898)

root biomass 0–60 15348 ± 3144
(3869, 24986)

6854 ± 1544
(3168, 14376)

11047 ± 2640
(2901, 26768)

%N 0–10 1.12 ± 0.05
(0.90, 1.31)

1.23 ± 0.07
(1.00, 1.41)

1.18 ± 0.06
(1.00, 1.41)

10–30 0.75 ± 0.03
(0.70, 0.91)

0.79 ± 0.05
(0.60, 0.91)

0.82 ± 0.04
(0.60, 1.00)

30–60 0.70 ± 0.03
(0.60, 0.81)

0.82 ± 0.06
(0.60, 1.01)

0.80 ± 0.04
(0.60, 0.91)

0–60 0.78 ± 0.02
(0.70, 0.85)

0.87 ± 0.04
(0.77, 1.00)

0.86 ± 0.03
(0.74, 0.97)

%SIC 0–10 0.15 ± 0.01
(0.10, 0.18)

0.16 ± 0.03
(0.06, 0.28)

0.16 ± 0.02
(0.04, 0.25)

10–30 4.24 ± 1.39
(0, 10.59)

0.62 ± 0.58
(0.11, 3.39)

2.95 ± 1.81
(0.08, 10.49)

30–60 15.04 ± 1.73
(1.03, 17.96)

8.38 ± 4.10
(0.26, 18.82)

12.66 ± 2.62
(0.24, 19.35)

%SOC 0–10 1.17 ± 0.07
(0.95, 1.43)

1.22 ± 0.10
(0.97, 1.62)

1.17 ± 0.07
(0.93, 1.55)

10–30 0.70 ± 0.03
(0.61, 0.85)

0.69 ± 0.03
(0.60, 0.81)

0.70 ± 0.04
(0.52, 0.88)

30–60 0.62 ± 0.02
(0.52, 0.74)

0.68 ± 0.05
(0.48, 0.88)

0.68 ± 0.04
(0.56, 0.88)

0–60 0.73 ± 0.02
(0.65, 0.80)

0.76 ± 0.03
(0.69, 0.85)

0.76 ± 0.03
(0.66, 0.86)

%SOM 0–10 3.65 ± 0.22
(2.45, 4.88)

3.72 ± 0.24
(3.04, 4.43)

3.65 ± 0.13
(3.27, 4.21)

10–30 3.53 ± 0.11
(3.10, 3.89)

3.38 ± 0.12
(3.10, 3.96)

3.41 ± 0.13
(2.96, 4.05)

30–60 3.41 ± 0.09
(3.08, 3.85)

3.57 ± 0.20
(3.06, 4.30)

3.52 ± 0.12
(3.01, 4.18)

WSA1† 0–10 68.4 ± 3.8
(55.0, 86.1)

80.9 ± 4.9
(62.5, 95.2)

75.7 ± 5.1
(31.9, 91.0)

WSA2† 0–10 41.8 ± 4.7
(29.5, 70.2)

55.2 ± 5.7
(40.6, 74.4)

49.8 ± 3.7
(24.4, 66.9)

WSA3† 0–10 45.5 ± 5.9
(27.0, 77.0)

56.9 ± 6.9
(36.8, 81.2)

54.8 ± 4.5
(33.6, 71.7)

shoot biomass = peak (aboveground) plant biomass (kg per ha), root biomass = living
and dead root biomass (kg per ha), %N = concentration of total nitrogen in root free
soil < 2 mm (% × 103), %SIC = soil inorganic carbon (carbonates; % × 103), %
SOC = concentration of soil organic carbon in root free soil < 2 mm (% × 102), %
SOM = soil organic matter (%), and WSA =% water-stable aggregates of three size
classes of macroaggregates (1 = 0.25–1 mm, 2 = 1-2, and 3 = 2-4). † indicates most of
these data were published by Reinhart and Vermeire (2016).
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tently smaller than other models.
To identify the best minimum dataset for predicting peak above-

ground plant biomass, we performed multiple linear regression analyses
using plant, site, and soil properties. First, we performed a principal
component analysis (PCA) of plant community composition data using
the vegan package (Oksanen et al., 2015) in R. Plant abundance data
were transformed with the command decostand(hellinger) in vegan,
and total inertia was 0.24. Then, PCA scores with eigenvalues greater
than the mean (i.e. PC1, PC2, and PC3) were incorporated into multiple
linear regression (MLR) models. MLR predictor variables included:
plant community composition data (PCA scores), carbonates, carbon:-
nitrogen ratio, elevation, N, root biomass, SOC, SOM, and water-stable
aggregates. We used the regsubsets function in the leaps package
(Lumley and Miller, 2009) in R with the exhaustive search method to
determine the five best models per level of parameters. Leaps uses an
efficient branch-and-bound algorithm to rapidly determine the best
models. We then used Schwarz’s Bayesian information criterion to
identify the five best models. We report traditional parametric statistics
for models. Residual analyses included visual confirmation that the
assumptions of normality and homoscedasticity of residuals were not
violated. We assessed multicollinearity among parameters in selected
models with variance inflation factors. We also conducted an outlier
analysis using Cook’s distance (Cook and Weisberg, 1982) to see
whether the model results changed, if the sample(s) with the highest
influence on the particular model outcomes were excluded from the
best MLR model. We calculated Cook’s distance and excluded all
samples with a Cook’s distance greater than one while rerunning the
particular model without them. This had no effect on significance
levels.

3. Results

Plant and soil properties were quantified in three adjoining areas
(grazing exclosure and two adjacent pastures). Areas varied appreciably
in soil nitrogen, soil inorganic carbon, total roots, and water-stable
aggregates, but not peak plant biomass, soil organic carbon, and soil
organic matter (Table 1). [Differences between areas should not be
interpreted as treatment effects because treatments (e.g. livestock
exclosure) were not replicated.]

Several plant, soil, and site properties were correlated. Though
elevation across the site varied by only one meter (Fig. 1), elevation was
correlated with most plant and soil properties (Table 2). Several plant
properties (i.e. biomass, principle components indicating variation in
plant community composition, root biomass) were associated with
variation in site (elevation) and/or soil properties (i.e. soil carbon:ni-
trogen, carbonates, total nitrogen concentration, soil organic carbon
concentration, and water-stable aggregates) (Table 2). For example,
total peak aboveground biomass was negatively correlated with subsur-
face carbonates and the stability of soil macroaggregates (2–4 mm
aggregate size class) (Fig. 2). Many plant and most soil properties
exhibited spatial autocorrelation (Moran’s I test, P≤ 0.04).

Modest amounts of variation in peak plant biomass (≤26%) were
explained by relatively simple and equally parsimonious models
(Table 3). The five best models explained 22–26% of the variation in
peak plant biomass. Among the five best models, two predictor
variables (subsurface soil carbonate concentration and elevation) were
common. Others such as plant community composition (PC3), soil
carbon:nitrogen (0–10 cm sample depth), soil organic carbon
(0–10 cm), and water-stable aggregates (0–10 cm, 1–2 mm aggregate
size class) were infrequently included as predictor variables.

Table 2
Pearson product-moment correlations (r) for plant, site, and soil properties in a northern mixed-grass prairie (n = 58). In bold are correlation coefficients with significant (α = 0.05) p-
values (*<0.05, **< 0.01, ***< 0.001).

biomass PC1 PC2 PC3 roots10 roots30 roots60 roots0.60 elevdiff

PC1 0
PC2 −0.05 0.03
PC3 0.16 −0.05 −0.06
roots10 0.04 −0.33* 0.13 −0.01
roots30 −0.1 −0.48*** 0.29* −0.22 0.69***
roots60 −0.12 −0.47*** 0.40** −0.12 0.35** 0.58***
roots0.60 −0.04 −0.47*** 0.27* −0.1 0.92*** 0.89*** 0.64***
elevdiff 0.04 −0.62*** 0.32* −0.14 0.38** 0.56*** 0.57*** 0.55***
CN.10 0.14 −0.30* −0.16 −0.02 0.51*** 0.41** 0.30* 0.52*** 0.35**
CN.30 0.05 −0.43*** 0.03 0.03 0.26 0.45*** 0.37** 0.39** 0.54***
CN.60 −0.02 −0.18 0.26 −0.1 0.34** 0.38** 0.47*** 0.44*** 0.42***
CN0.60 0.06 −0.38** 0.12 −0.07 0.49*** 0.58*** 0.56*** 0.62*** 0.60***
N10 0.12 0.24 −0.19 0.31* −0.02 −0.35** −0.28* −0.19 −0.43***
N30 −0.06 0.29* 0.13 0.01 0 −0.14 −0.05 −0.06 −0.15
N60 0.03 0.48*** −0.28* 0.21 −0.29* −0.63*** −0.59*** −0.52*** −0.63***
N0.60 0.02 0.51*** −0.2 0.23 −0.21 −0.60*** −0.51*** −0.45*** −0.62***
SIC10 −0.2 0.21 −0.09 −0.14 −0.16 0.03 0.03 −0.08 −0.17
SIC30 −0.18 −0.37** 0.49*** −0.21 0.26* 0.57*** 0.65*** 0.50*** 0.59***
SIC60 −0.32* −0.53*** 0.17 −0.07 0.39** 0.49*** 0.47*** 0.51*** 0.67***
SOC10 0.16 0.04 −0.24 0.24 0.24 −0.08 −0.08 0.1 −0.18
SOC30 −0.02 0.02 0.17 0.04 0.18 0.15 0.2 0.21 0.2
SOC60 0.03 0.45*** −0.16 0.17 −0.14 −0.50*** −0.42*** −0.34** −0.48***
SOC0.60 0.07 0.35** −0.15 0.24 0.09 −0.31* −0.23 −0.1 −0.32*
SOM10 0.03 0.04 −0.08 0.16 0.17 −0.07 0.16 0.12 −0.1
SOM30 0.01 −0.19 0.15 0.08 0.06 0.25 0.25 0.18 0.35**
SOM60 −0.18 0.09 −0.35** 0.33* −0.11 −0.33* −0.31* −0.25 −0.21
WSA1 −0.05 0.29* −0.02 0.18 −0.22 −0.31* −0.18 −0.27* −0.41**
WSA2 −0.25 0.17 −0.26* −0.01 −0.08 −0.30* −0.08 −0.17 −0.35**
WSA3 −0.26* 0.11 −0.33* −0.05 −0.07 −0.27* −0.03 −0.14 −0.27*

Abbreviations: biomass (peak annual aboveground plant biomass in 2011), PC (principle component [1–3] for plant community composition), roots (living and dead root biomass
[10 = 0–10 cm depth, 30 = 10–30, 60 = 30–60, or 0.60 = 0–60]), elevdiff (elevation difference), CN (ratio of soil organic carbon to total nitrogen [0–10, 10–30, 30–60, or 0–60 cm], N
(concentration of total nitrogen in root free soil < 2 mm [0–10, 10–30, 30–60, or 0–60 cm]), sic (soil inorganic [carbonate] concentration [0–10, 10–30, or 30–60 cm]), SOC
(concentration of soil organic carbon in root free soil < 2 mm [0–10, 10–30, 30–60, or 0–60 cm]), SOM (% soil organic matter [0–10, 10–30, or 30–60 cm]), and WSA (% water-stable
aggregates of three size classes of macroaggregates [1 = 0.25–1 mm, 2 = 1–2, and 3 = 2–4]).
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4. Discussion

4.1. Predictors of plant biomass

The capacity of rangelands to produce plant (and subsequently

animal) biomass annually is an essential metric of rangeland function
and sustainability (Havstad et al., 2007; Reeves and Baggett, 2014). A
major challenge is to identify robust indicators of rangeland plant
productivity, especially leading indicators of future degradation. Here
we tested whether local variation (plot-to-plot) in peak aboveground
plant biomass was explained by several soil properties including: root
biomass, soil carbonates, soil organic carbon concentration, soil organic
matter, total nitrogen concentration, and water-stable aggregates. Two
predictor variables (i.e. subsurface carbonates and water-stable aggre-
gates) were significant albeit weak (r2 ≤ 0.10) individual predictors of
plot-to-plot variation in plant biomass. Oddly, plant biomass above-
ground was not appreciably associated with root biomass thereby
suggesting spatial variation in biomass allocation strategies.

The five best multiple linear regression models identified several
soil (carbon:nitrogen, organic carbon, inorganic carbon [i.e. carbo-
nates], and water-stable aggregates), plant (principle component 3),
and site (elevation) properties that explained variation in plant biomass
in the focal calcareous grassland. The variables subsurface carbonates
and elevation were present in nearly all of the best multiple linear
regression models, an indication of their overall importance as pre-
dictor variables. Elevational change across the site, however, was
relatively small (1 m) and individually was not related to plant biomass
(Table 2). After controlling for the variation in plant biomass caused by
the variable subsurface carbonates, some of the remaining variation in
plant biomass was then explained by elevation. In other words,
variation in soil carbonates seemingly masked the relationship between
plant biomass and elevation.

We believe subsurface soil carbonates was a useful predictor of plant
biomass in the focal calcareous grassland because this soil property is
inversely related to some plant available nutrients and soil depth.
Specifically, soil carbonates may limit plant available phosphorus
(Cross and Schlesinger, 2001) which may subsequently limit plant
productivity in this (Reinhart et al., 2016) and other ecosystems

Fig. 2. Relationship between peak plant biomass and four of the best soil predictor variables (A-D). Panels differentiate inorganic carbon data for the soil surface (0–10 cm soil depth, A)
and subsurface (30–60 cm, C) and two size classes of macroaggregates (1–2 mm, B; 2–4 mm, D). Selection of best soil property predictors was based on results reported in Table 2. Best-fit
lines (based on ordinary least squares) are solid when regressions were significant (α= 0.05) or dashed when non-significant.

Table 3
Five best multiple regression models, based on Schwarz Bayesian Criterion scores (BIC),
to explain local variation in peak annual (aboveground) plant biomass.

models independent variables BIC t-value F P R2

1 elev – 2.84 – 0.006 –
SIC60 – −3.89 – <0.001 –
total −2.01 – 7.63 0.001 0.22

2 CN10 – 2.42 – 0.019 –
SIC60 – −3.49 – <0.001 –
WSA2 – −2.64 – 0.011 –
total −1.04 – 6.25 0.001 0.26

3 elev – 3.05 – 0.004 –
PC3 – 1.54 – 0.13 –
SIC60 – −3.99 – <0.001 –
total −0.46 – 6.01 0.001 0.25

4 elev – 2.46 – 0.017 –
CN10 – 1.44 – 0.15 –
SIC60 – −4.02 – <0.001 –
total −0.15 – 4.09 0.002 0.25

5 elev – 2.99 – 0.004 –
SIC60 – −3.88 – <0.001 –
SOC10 – 1.32 – 0.19 –
total 0.19 – 5.74 0.002 0.24

total = properties of the full model, CN10 = ratio of soil organic carbon to total nitrogen
from 0 to 10 cm, elev = elevational difference, PC3 = principle component three for
plant community composition, SIC60 = soil carbonate concentration from 30 to 60 cm,
SOC10 = soil organic carbon concentration from 0 to 10 cm, and WSA2 =% water-stable
aggregates (1–2 mm sized macroaggregates) from 0 to 10 cm. Significance of linear model
was tested with ANOVA. Numerator and denominator degrees of freedom, respectively,
were 2,55 for model 1, and 3,54 for models 2 through 5.
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(DeLuca et al., 1989; Fay et al., 2015). Furthermore, soil thickness is
often positively associated with rangeland biomass (Rezaei et al., 2006;
Wang, 2010). We interpret that areas with low levels of carbonates
from 10 to 60 cm soil depths have deeper soils than areas where
carbonates are prevalent from 10 to 60 cm. Spatial variation in
subsurface carbonates is likely to develop over long periods in response
to leaching, weathering, and rhizosphere acidification. Some of the
variation in soil carbonates is likely driven by subtle differences in
geomorphology and soil development over long periods. Shifts in
rangeland management practices (e.g. timing and intensity of grazing)
may not affect plant biomass by effects on soil carbonates. Elucidating
other soil properties that are responsive to rangeland management
practices and associated with appreciable variation in ecosystem
function should remain a priority.

Contrary to our predictions, the surface soil properties measured in
this study were not strong predictors of plant biomass. Many soil
properties are routinely measured and some are positively correlated
with variation in plant biomass over large gradients (Craine and
Jackson, 2009; Sala et al., 1988; Sims and Nielsen, 1986). Most of the
soil properties measured in this study did not explain appreciable
variation in peak grassland biomass. Unfortunately, popular soil
indicators of agricultural management may not explain appreciable
variation in actual ecosystem function (Bennett et al., 2010; Letey,
1991; Oldfield et al., 2015), especially in rangelands (Pierson et al.,
2014; Reinhart et al., 2015). In other words, many putative indicators
may mainly describe a soil's potential and not actual ecosystem function
(Karlen et al., 1997).

Here we briefly discuss some important underlying assumptions and
potential caveats. We expected that the focal grassland site, spanning
two adjacent pastures and a grazing exclosure for a single soil series,
contained adequate variation in plant biomass, composition, and soil
properties to identify meaningful predictors. We also expect that
management effects will make some vegetation and soil property
patches more common and others less common within a grassland.
For example, grazing pressure is known to cause gradual and reversible
change to vegetation in the Northern Great Plains (Porensky et al.,
2016). So measurements across a site should capture meaningful
variation (Table 1). Furthermore, many land managers and scientists
desire ground-based (leading) indicators of future change (or subtle
changes) because aerial-based data (i.e. remote sensing imagery) can
often detect only large changes in rangeland productivity (e.g. Reeves
and Baggett, 2014). A limitation to our study may relate to residual
variation associated with soil samples having been collected adjacent to
(and not beneath) areas where biomass was clipped. However, other
studies at the focal research station had similar variation in plant
biomass and sources of residual error but identified stronger predictors
of peak plant biomass (Reinhart et al., 2016; Reinhart et al., 2015).

4.2. Putative indicator of rangeland health

Soil aggregate stability is often used to interpret rangeland health
(Herrick et al., 2010; Pellant et al., 2005; Tongway and Hindley, 2004)
and is thought to be an indicator of carbon sequestration (Six and
Paustian, 2014). Prior research at the focal research station and region,
however, indicates that measures of aggregate stability are not reliable
predictors of some ecosystem functions in natural grasslands (Reinhart
et al., 2015; Reinhart and Vermeire, 2016; Wang, 2010). We found no
appreciable (positive) relationship between aggregate stability and
grassland (aboveground and belowground) biomass. In fact, all associa-
tions between measures of plant biomass and soil aggregate stability
were negative (Table 2). This was consistent with other regional studies
(Reinhart et al., 2015; Reinhart and Vermeire, 2016; Wang, 2010) but
contrary to a rangeland health assessment which predicts aggregate
stability is positively related to all major indices of rangeland health
(Pyke et al., 2002). We suspect the failure to validate aggregate stability
as an important indicator may relate to the confounding effects of

various plant (e.g. plant community composition, root biomass) (Gould
et al., 2016; Reinhart and Vermeire, 2016) and soil properties (e.g.
stability of 0.25–1 mm macroaggregates was negatively associated
[r2 = 0.18] with subsurface soil carbonates [see Supplementary In-
formation Table S1]). These results add to the growing certainty that
aggregate stability is not a consistent predictor of ecosystem function
and rangeland health in the Northern Great Plains. Other soil physical
(i.e. infiltration) and chemical properties (e.g. plant available phos-
phorus) have explained larger amounts (0.15 ≤ r2 ≤ 0.19) of local
(plot-to-plot) variation in plant biomass in the Northern Great Plains
(Reinhart et al., 2016; Reinhart et al., 2015). Our findings call attention
to the need to quantify predictive uncertainty (i.e. %... truth explained)
for any ecosystem health assessment to ensure it accurately predicts
actual (not potential) ecosystem function.
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